حسگرهای شناسایی بقایای شلیک گلوله جهت آنالیز در صحنه جرم: توسعه حسگرهای پوشیدنی

نوع مقاله: مقاله علمی

نویسنده

پژوهشکده تجهیزات و فناوری های انتظامی، پژوهشگاه علوم انتظامی

چکیده

مطالعه بقایای شلیک گلوله در تشخیص خودکشی و دگرکشی، نوع سلاح، مهمات، فاصله و زاویه شلیک بسیار کمک کننده است زیرا اثر تیراندازی می­تواند از شکاف ماشه و منافذ سلاح، بر روی دست­ها، صورت، لباس و اجسام نزدیک به محل شلیک، منتشر شود. وقتی اسلحه شلیک می­شود، ترکیبات سوخته و نیم سوخته در فاز گازی در همه­ی جهات پراکنده می­شوند. پارامترهای مورد استفاده شامل این موارد می­باشد: گلوله، پوکه فشنگ و پودر نیمه سوخته­ای که به واسطه­ی عملکرد سلاح، به صورت گاز از لوله اسلحه و شکاف­های غلاف آن به اطراف پراکنده می­شود و در نهایت صدای شلیک اسلحه که می­تواند به وسیله­ی شهود، شنیده شود. هریک از این اجزا می­تواند برای کشف جرم و شناسایی مجرم کمک کند. معرف­ها و روش­های دستگاهی مختلفی برای جمع­آوری بقایای شلیک و آنالیز آن مورد استفاده قرار می­گیرد. استفاده از حسگرها به دلیل توانایی بالایی که فراهم می­سازند برای بررسی موضوع در صحنه جرم و بدون نیاز به تجهیزات گران قیمت بسیار مورد توجه می­باشد. اخیرا گزارش­هایی کاربردی مبنی بر کاربرد حسگرها در آنالیز بقایای شلیک در مجلات مختلف چاپ شده که در مقاله حاضر، مروری بر این مطالعات مورد بررسی قرار می­گیرد. در این مقاله هدف ما فراهم آوردن بستری برای مرور و بحث در زمینه بقایای شلیک گلوله و حسگرهای توسعه داده شده برای شناسایی آن می­باشد.


 

کلیدواژه‌ها


عنوان مقاله [English]

Gunshot Residue Detecting Sensors for Crime Scene Analysis: Wearable Sensors Development

نویسنده [English]

  • Hamid Abedi
Police technology and equipment department, Police Research and Social studies Institute,
چکیده [English]

Studying gunshot residue in determining suicide and homicide, weapon type, munitions, distance and angle of shooting is very helpful, because gunshot residue can be dissipated on hands, faces, clothes and nearby objects from holes of a trigger and weapon. When a gunshot is fired, the burned and semi-burned compositions are dissipated in the gas phase in all directions. The parameters used include: bullet, bullet casing, the semi-burned powder, which due to the function of the weapon, are dissipated around from the holster’s holes in the form of gas and finally, the gunshot sound that can be heard by witnesses. Each of these elements can be helpful for the detection of a crime and criminal.
Different instrumental methods can be used to collect gunshot residue and its analysis. Using sensors to investigate cases at a crime scene without the need for very expensive equipment, attracts attention. Recently applied reports concerning the use of sensors to analyze gunshot residue have been printed in various magazines which in this research will be studied. This research is intended to provide the stage to review and discuss gunshot residue and developed sensors to identify them.

کلیدواژه‌ها [English]

  • Gunshot Residue (GSR)
  • Sensor
  • Analysis at a crime scene
  • Detective Finger Sensor
  • Wearable Chemical Sensor System
 

Bandodkar, A. J., O'Mahony, A. M., Ramirez, J., Samek, I. A., Anderson, S. M., Windmiller, J. R., & Wang, J. (2013). Solid-state Forensic Finger sensor for integrated sampling and detection of gunshot residue and explosives: towards 'Lab-on-a-finger'. Analyst, 138(18), 5288-5295.

Barfidokht, A., Mishra, R. K., Seenivasan, R., Liu, S., Hubble, L. J., Wang, J., & Hall, D. A. (2019). Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensors and Actuators B: Chemical, 296, 126422.

Basu, S., (1982). Formation of gunshot residues. Journal of Forensic Science, 27(1), p. 72-91.

Brożek-Mucha, Z. (2017). Trends in analysis of gunshot residue for forensic purposes. Analytical and Bioanalytical Chemistry, 409(25), 5803-5811. doi:10.1007/s00216-017-0460-1

Caddy, B., & Meng, H.-h. (1997). Gunshot residue analysis—a review. Journal of Forensic Science, 42(4), 553-570.  

Cardoso, R. M., Castro, S. V., Silva, M. N., Lima, A. P., Santana, M. H., Nossol, E., Munoz, R. A. (2019). 3D-printed flexible device combining sampling and detection of explosives. Sensors and Actuators B: Chemical, 292, 308-313.

Castro, S. V. F., Lima, A. P., Rocha, R. G., Cardoso, R. M., Montes, R. H. O., Santana, M. H. P., Munoz, R. A. A. (2020). Simultaneous determination of lead and antimony in gunshot residue using a 3D-printed platform working as sampler and sensor. Analytica Chimica Acta, 1130, 126-136. doi:https://doi.org/10.1016/j.aca.2020.07.033

Charles, S., Geusens, N., Vergalito, E., & Nys, B. (2020). Interpol review of gunshot residue 2016–2019. Forensic Science International: Synergy.

Ciui, B., Martin, A., Mishra, R. K., Nakagawa, T., Dawkins, T. J., Lyu, M., . . . Wang, J. (2018). Chemical sensing at the robot fingertips: Toward automated taste discrimination in food samples. ACS sensors, 3(11), 2375-2384.

Cizdziel, J., & Black, O. (2019). Forensic Analysis of Gunshot Residue, 3D-Printed Firearms, and Gunshot Injuries: Current Research and Future Perspectives: Nova Science Pub Inc.

Dalby, O., Butler, D., & Birkett, J. W. (2010). Analysis of Gunshot Residue and Associated Materials—A Review. Journal of Forensic Sciences, 55(4), 924-943. doi:10.1111/j.1556-4029.2010.01370.x

Fambro, L. A., Miller, E. T., Vandenbos, D. D., & Dockery, C. R. (2016). Characterization of lead-free gunshot residue analogs. Analytical Methods, 8(15), 3132-3139

Gandy, L., Najjar, K., Terry, M., & Bridge, C. (2018). A novel protocol for the combined detection of organic, inorganic gunshot residue. Forensic Chemistry, 8, 1-10.

Goudsmits, E., Blakey, L. S., Chana, K., Sharples, G. P., & Birkett, J. W. (2019). The analysis of organic and inorganic gunshot residue from a single sample. Forensic Science International, 299, 168-173.

 Grygar, T., Marken, F., Schröder, U., & Scholz, F. (2002). Electrochemical analysis of solids. A review. Collection of Czechoslovak chemical communications, 67(2), 163-208.

 Harito, C., Utari, L., Putra, B. R., Yuliarto, B., Purwanto, S., Zaidi, S. Z., . . . Walsh, F. C. (2020). The Development of Wearable Polymer-Based Sensors: Perspectives. Journal of the Electrochemical Society, 167(3), 037566.

Hubble, L. J., & Wang, J. (2019). Sensing at Your Fingertips: Glove-based Wearable Chemical Sensors. Electroanalysis, 31(3), 428-436. doi:10.1002/elan.201800743

Kim, J., Kumar, R., Bandodkar, A. J., & Wang, J. (2017). Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advanced Electronic Materials, 3(1), 1600260. doi:10.1002/aelm.201600260

Li, X., Koh, K. H., Farhan, M., & Lai, K. W. C. (2020). An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale, 12(6), 4110-4118.

Manganelli, M., Weyermann, C., & Gassner, A.-L. (2019). Surveys of organic gunshot residue prevalence: comparison between civilian and police populations. Forensic Science International, 298, 48-57.

Merli, D., Amadasi, A., Mazzarelli, D., Cappella, A., Castoldi, E., Ripa, S., Profumo, A. (2019). Comparison of Different Swabs for Sampling Inorganic Gunshot Residue from Gunshot Wounds: Applicability and Reliability for the Determination of Firing Distance. Journal of Forensic Sciences, 64(2), 558-564.

O'Mahony, A. M., & Wang, J. (2013). Electrochemical Detection of Gunshot Residue for Forensic Analysis: A Review. Electroanalysis, 25(6), 1341-1358. doi:10.1002/elan.201300054

O'Mahony, A. M., Windmiller, J. R., Samek, I. A., Bandodkar, A. J., & Wang, J. (2012). “Swipe and Scan”: Integration of sampling and analysis of gunshot metal residues at screen-printed electrodes. Electrochemistry Communications, 23, 52-55. doi:http://dx.doi.org/10.1016/j.elecom.2012.07.004

Promsuwan, K., Kanatharana, P., Thavarungkul, P., & Limbut, W. (2020). Nitrite amperometric sensor for gunshot residue screening. Electrochimica Acta, 331, 135309.

Ritchie, N. W., DeGaetano, D., Edwards, D., Niewoehner, L., Platek, F., & Wyatt, J. M. (2020). Proposed Practices for Validating the Performance of Instruments Used for Automated Inorganic Gunshot Residue Analysis. Forensic Chemistry, 100252.

Saverio Romolo, F., & Margot, P. (2001). Identification of gunshot residue: a critical review. Forensic Science International, 119(2), 195-211. doi:http://dx.doi.org/10.1016/S0379-0738(00)00428-X

Scholz, F., & Lange, B. (1992). Abrasive stripping voltammetry — an electrochemical solid state spectroscopy of wide applicability. TrAC Trends in Analytical Chemistry, 11(10), 359-367.

Schwoeble, A. J., & Exline, D. L. (2000). Current Methods in Forensic Gunshot Residue Analysis: CRC Press.

Singer, R., Davis, D., & Houck, M. (1996). A Survey of Gunshot Residue Analysis Methods.

Vuki, M., Shiu, K.-K., Galik, M., O'Mahony, A. M., & Wang, J. (2012). Simultaneous electrochemical measurement of metal and organic propellant constituents of gunshot residues. Analyst, 137(14), 3265-3270. doi:10.1039/c2an35379b

Wallace, J., & McQuillan, J. (1984). Discharge residues from cartridge-operated industrial tools. Journal of the Forensic Science Society, 24(5), 495-508.

Wallace, J. S. (2008). Chemical Analysis of Firearms, Ammunition, and Gunshot Residue: CRC Press.

Yáñez-Sedeño, P., Campuzano, S., & Pingarrón, J. M. (2020). Screen-Printed Electrodes: Promising Paper and Wearable Transducers for (Bio) Sensing. Biosensors, 10(7), 76.

Zeichner, A., & Levin, N. (1997). More on the uniqueness of gunshot residue (GSR) particles. Journal of Forensic Science, 42(6), 1027-1028.

Zhang, X., Ju, H., & Wang, J. (2011). Electrochemical Sensors, Biosensors and their Biomedical Applications: Elsevier Science.

 

Kahnjani, S (2015), “Polymer Sensors to Detect explosive Nitro-aromatic, Karagah Quarterly, (31) 08, Pages 91-101.

Roustaie, Hadi, H, Ehteshami, Sh (2016), “Application and Development of Wearable Light Chemical Nano-Sensors in MilitaryKaragah Quarterly, (36) 09, Pages 115-141.

Nabavi Fard, S (2015), “Using Nano-Sensors to Detect Slight Amount of Explosives”, Karagah Quarterly, (29) 08, Pages 37-50

 

خانجانی, س. (2015). حسگرهای پلیمری برای تشخیص نیترو آروماتیک های منفجره. فصلنامه علمی کارآگاه, 08(31), 91-101.

روستایی, ع.,  هادی, ح., ، احتشامی, ش.(2016). کاربرد و توسعه نانوحسگرهای شیمیایی نوری قابل پوشش در زمینه نظامی. فصلنامه علمی کارآگاه, 09(36), 115-141.

نبوی فرد, س. (2015). استفاده از نانوحسگرها برای شناسایی مقادیر ناچیز مواد منفجره. فصلنامه علمی کارآگاه, 08(29), 37-50.