Bandodkar, A. J., O'Mahony, A. M., Ramirez, J., Samek, I. A., Anderson, S. M., Windmiller, J. R., & Wang, J. (2013). Solid-state Forensic Finger sensor for integrated sampling and detection of gunshot residue and explosives: towards 'Lab-on-a-finger'. Analyst, 138(18), 5288-5295.
Barfidokht, A., Mishra, R. K., Seenivasan, R., Liu, S., Hubble, L. J., Wang, J., & Hall, D. A. (2019). Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensors and Actuators B: Chemical, 296, 126422.
Basu, S., (1982). Formation of gunshot residues. Journal of Forensic Science, 27(1), p. 72-91.
Brożek-Mucha, Z. (2017). Trends in analysis of gunshot residue for forensic purposes. Analytical and Bioanalytical Chemistry, 409(25), 5803-5811. doi:10.1007/s00216-017-0460-1
Caddy, B., & Meng, H.-h. (1997). Gunshot residue analysis—a review. Journal of Forensic Science, 42(4), 553-570.
Cardoso, R. M., Castro, S. V., Silva, M. N., Lima, A. P., Santana, M. H., Nossol, E., Munoz, R. A. (2019). 3D-printed flexible device combining sampling and detection of explosives. Sensors and Actuators B: Chemical, 292, 308-313.
Castro, S. V. F., Lima, A. P., Rocha, R. G., Cardoso, R. M., Montes, R. H. O., Santana, M. H. P., Munoz, R. A. A. (2020). Simultaneous determination of lead and antimony in gunshot residue using a 3D-printed platform working as sampler and sensor. Analytica Chimica Acta, 1130, 126-136. doi:https://doi.org/10.1016/j.aca.2020.07.033
Charles, S., Geusens, N., Vergalito, E., & Nys, B. (2020). Interpol review of gunshot residue 2016–2019. Forensic Science International: Synergy.
Ciui, B., Martin, A., Mishra, R. K., Nakagawa, T., Dawkins, T. J., Lyu, M., . . . Wang, J. (2018). Chemical sensing at the robot fingertips: Toward automated taste discrimination in food samples. ACS sensors, 3(11), 2375-2384.
Cizdziel, J., & Black, O. (2019). Forensic Analysis of Gunshot Residue, 3D-Printed Firearms, and Gunshot Injuries: Current Research and Future Perspectives: Nova Science Pub Inc.
Dalby, O., Butler, D., & Birkett, J. W. (2010). Analysis of Gunshot Residue and Associated Materials—A Review. Journal of Forensic Sciences, 55(4), 924-943. doi:10.1111/j.1556-4029.2010.01370.x
Fambro, L. A., Miller, E. T., Vandenbos, D. D., & Dockery, C. R. (2016). Characterization of lead-free gunshot residue analogs. Analytical Methods, 8(15), 3132-3139
Gandy, L., Najjar, K., Terry, M., & Bridge, C. (2018). A novel protocol for the combined detection of organic, inorganic gunshot residue. Forensic Chemistry, 8, 1-10.
Goudsmits, E., Blakey, L. S., Chana, K., Sharples, G. P., & Birkett, J. W. (2019). The analysis of organic and inorganic gunshot residue from a single sample. Forensic Science International, 299, 168-173.
Grygar, T., Marken, F., Schröder, U., & Scholz, F. (2002). Electrochemical analysis of solids. A review. Collection of Czechoslovak chemical communications, 67(2), 163-208.
Harito, C., Utari, L., Putra, B. R., Yuliarto, B., Purwanto, S., Zaidi, S. Z., . . . Walsh, F. C. (2020). The Development of Wearable Polymer-Based Sensors: Perspectives. Journal of the Electrochemical Society, 167(3), 037566.
Hubble, L. J., & Wang, J. (2019). Sensing at Your Fingertips: Glove-based Wearable Chemical Sensors. Electroanalysis, 31(3), 428-436. doi:10.1002/elan.201800743
Kim, J., Kumar, R., Bandodkar, A. J., & Wang, J. (2017). Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advanced Electronic Materials, 3(1), 1600260. doi:10.1002/aelm.201600260
Li, X., Koh, K. H., Farhan, M., & Lai, K. W. C. (2020). An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale, 12(6), 4110-4118.
Manganelli, M., Weyermann, C., & Gassner, A.-L. (2019). Surveys of organic gunshot residue prevalence: comparison between civilian and police populations. Forensic Science International, 298, 48-57.
Merli, D., Amadasi, A., Mazzarelli, D., Cappella, A., Castoldi, E., Ripa, S., Profumo, A. (2019). Comparison of Different Swabs for Sampling Inorganic Gunshot Residue from Gunshot Wounds: Applicability and Reliability for the Determination of Firing Distance. Journal of Forensic Sciences, 64(2), 558-564.
O'Mahony, A. M., & Wang, J. (2013). Electrochemical Detection of Gunshot Residue for Forensic Analysis: A Review. Electroanalysis, 25(6), 1341-1358. doi:10.1002/elan.201300054
O'Mahony, A. M., Windmiller, J. R., Samek, I. A., Bandodkar, A. J., & Wang, J. (2012). “Swipe and Scan”: Integration of sampling and analysis of gunshot metal residues at screen-printed electrodes. Electrochemistry Communications, 23, 52-55. doi:
http://dx.doi.org/10.1016/j.elecom.2012.07.004
Promsuwan, K., Kanatharana, P., Thavarungkul, P., & Limbut, W. (2020). Nitrite amperometric sensor for gunshot residue screening. Electrochimica Acta, 331, 135309.
Ritchie, N. W., DeGaetano, D., Edwards, D., Niewoehner, L., Platek, F., & Wyatt, J. M. (2020). Proposed Practices for Validating the Performance of Instruments Used for Automated Inorganic Gunshot Residue Analysis. Forensic Chemistry, 100252.
Scholz, F., & Lange, B. (1992). Abrasive stripping voltammetry — an electrochemical solid state spectroscopy of wide applicability. TrAC Trends in Analytical Chemistry, 11(10), 359-367.
Schwoeble, A. J., & Exline, D. L. (2000). Current Methods in Forensic Gunshot Residue Analysis: CRC Press.
Singer, R., Davis, D., & Houck, M. (1996). A Survey of Gunshot Residue Analysis Methods.
Vuki, M., Shiu, K.-K., Galik, M., O'Mahony, A. M., & Wang, J. (2012). Simultaneous electrochemical measurement of metal and organic propellant constituents of gunshot residues. Analyst, 137(14), 3265-3270. doi:10.1039/c2an35379b
Wallace, J., & McQuillan, J. (1984). Discharge residues from cartridge-operated industrial tools. Journal of the Forensic Science Society, 24(5), 495-508.
Wallace, J. S. (2008). Chemical Analysis of Firearms, Ammunition, and Gunshot Residue: CRC Press.
Yáñez-Sedeño, P., Campuzano, S., & Pingarrón, J. M. (2020). Screen-Printed Electrodes: Promising Paper and Wearable Transducers for (Bio) Sensing. Biosensors, 10(7), 76.
Zeichner, A., & Levin, N. (1997). More on the uniqueness of gunshot residue (GSR) particles. Journal of Forensic Science, 42(6), 1027-1028.
Zhang, X., Ju, H., & Wang, J. (2011). Electrochemical Sensors, Biosensors and their Biomedical Applications: Elsevier Science.
Kahnjani, S (2015), “Polymer Sensors to Detect explosive Nitro-aromatic, Karagah Quarterly, (31) 08, Pages 91-101.
Roustaie, Hadi, H, Ehteshami, Sh (2016), “Application and Development of Wearable Light Chemical Nano-Sensors in MilitaryKaragah Quarterly, (36) 09, Pages 115-141.
Nabavi Fard, S (2015), “Using Nano-Sensors to Detect Slight Amount of Explosives”, Karagah Quarterly, (29) 08, Pages 37-50
خانجانی, س. (2015). حسگرهای پلیمری برای تشخیص نیترو آروماتیک های منفجره. فصلنامه علمی کارآگاه, 08(31), 91-101.
روستایی, ع., هادی, ح., ، احتشامی, ش.(2016). کاربرد و توسعه نانوحسگرهای شیمیایی نوری قابل پوشش در زمینه نظامی. فصلنامه علمی کارآگاه, 09(36), 115-141.
نبوی فرد, س. (2015). استفاده از نانوحسگرها برای شناسایی مقادیر ناچیز مواد منفجره. فصلنامه علمی کارآگاه, 08(29), 37-50.